The Bousfield Lattice for Truncated Polynomial Algebras

نویسندگان

  • W. G. DWYER
  • J. H. PALMIERI
چکیده

The global structure of the unbounded derived category of a truncated polynomial ring on countably many generators is investigated, via its Bousfield lattice. The Bousfield lattice is shown to have cardinality larger than that of the real numbers, and objects with large tensor-nilpotence height are constructed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eilenberg-moore Model Categories and Bousfield Localization

Talk 1: Big Goal of Alg Top, operads and model categories, fix notation for model categories, remarks about how difficult it is to verify model category axioms. Motivation from equivariant spectra, and discussion of Kervaire. Monoidal model categories, define the inherited model structure on the category of algebras over an operad. Basic facts about Bousfield localization. Preservation theorem ...

متن کامل

Lattice of full soft Lie algebra

In ‎this ‎paper, ‎we ‎study ‎the ‎relation ‎between ‎the ‎soft ‎sets ‎and ‎soft ‎Lie ‎algebras ‎with ‎the ‎lattice theory. ‎We ‎introduce ‎the ‎concepts ‎of ‎the ‎lattice ‎of ‎soft ‎sets, ‎full ‎soft ‎sets ‎and ‎soft ‎Lie ‎algebras ‎and next, we ‎verify ‎some ‎properties ‎of ‎them. We ‎prove ‎that ‎the ‎lattice ‎of ‎the ‎soft ‎sets ‎on ‎a fixed parameter set is isomorphic to the power set of a ...

متن کامل

Generalized Bousfield Lattices and a Generalized Retract Conjecture

In [1], Bousfield studied a lattice (Bousfield lattice) on the stable homotopy category of spectra, and in [5], Hovey and Palmieri made the retract conjecture on the lattice. In this paper we generalize the Bousfield lattice and the retract conjecture to the ones on a monoid. We also determine the structure of typical examples of them, which satisfy the generalized retract conjecture. In partic...

متن کامل

Ju n 20 07 HIGHEST - WEIGHT THEORY FOR TRUNCATED CURRENT LIE ALGEBRAS

is called a truncated current Lie algebra, or sometimes a generalised Takiff algebra. We shall describe a highest-weight theory for ĝ, and the reducibility criterion for the universal objects of this theory, the Verma modules. The principal motivation, beside the aesthetic, is that certain representations of affine Lie algebras are essentially representations of a truncated current Lie algebra....

متن کامل

The plus construction, Bousfield localization, and derived completion

We define a plus-construction on connective augmented algebras over operads in symmetric spectra using Quillen homology. For associative and commutative algebras, we show that this plus-construction is related to both Bousfield localization and Carlsson’s derived completion.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008